EXECUTIVE SUMMARY

This document is the Water Year (WY) 1999 Annual Report of the Chicago District, U. S. Army Corps of Engineers activities in the monitoring and review of the accounting of Lake Michigan diversion flows through Chicago, Illinois as directed by the 1980 amendment to the 1967 U. S. Supreme Court Decree. Additionally, this report serves to summarize the Corps' major accomplishments with respect to the mission as mandated by the Water Resources Development Act of 1986, PL99-662, Section 1142. This act gave the Corps complete responsibility for diversion accounting effective 1 October 1987. This report provides an overview and audit of flow measurements and accounting computed by the Corps of Engineers for WY 1998, 1 October 1997 through 30 September 1998 and for WY 1999, 1 October 1998 through 30 September 1999.

The Lake Michigan Diversion Accounting Reports for WY 1998 and WY 1999 have been completed. The State of Illinois diverted 3,060 cfs during WY 1998 and 2,909 cfs during WY 1999. This diversion is 140 cfs and 291 cfs less than the 3,200 cfs 40 year average diversion specified in the modified decree for WY 1998 and WY 1999, respectively. The running average of the diversion for WY 1981 through WY 1998 is 3,382 cfs, or 182 over the annual allocation; the running average of the diversion for WY 1981 through WY 1999 reduces to 3,357 cfs, or 157 over the annual allocation. Also, the annual average diversion has exceeded the 3,680 cfs annual limit three times, once more than the maximum number of times allowed in the decree. Additionally, the absolute annual maximum of 3,840 cfs has been exceeded during the WY93 accounting period. The cumulative deviation is -3,267 cfs-years and -2,976 cfs-years at the end of WY 1998 and WY1999, respectively. The negative sign indicates a cumulative flow deficit. The maximum allowable cumulative flow deficit specified in the decree is -2,000 cfs-years.
Table of Contents

EXECUTIVE SUMMARY .. i

INTRODUCTION ... 1
AUTHORITY FOR REPORT .. 1
HISTORY OF THE DIVERSION ... 1

SIGNIFICANT HYDROLOGIC EVENTS ... 5
STATUS OF ACCOUNTING REPORTS .. 5

SOURCES OF DIVERSION .. 8
ACCOUNTING PROCEDURES ... 8
DIVERSION COMPUTATION .. 9
DIVERSION BUDGET CHECKS ... 9

ACTIVITIES FOR FY 1999 .. 9

ACTIVITIES FOR FY 2000 – FY 2003 .. 10

ACCOUNTING REPORTS .. 11

SUMMARY AND CONCLUSIONS .. 12

SUMMARY ... 12
CONCLUSIONS .. 12

Table of Figures and Tables

FIGURE 1 DEVELOPMENT OF THE CHICAGO SANITARY AND SHIP CANAL SYSTEM 3
FIGURE 2 LOCATION PLAN - LAKE MICHIGAN DIVERSION AT CHICAGO 4

TABLE 1 WY 1998 MONTHLY AND ANNUAL PRECIPITATION (INCHES) 5
TABLE 2 WY 1999 MONTHLY AND ANNUAL PRECIPITATION (INCHES) 5
TABLE 3 STATUS OF THE STATE OF ILLINOIS DIVERSION .. 7

List of Appendices

APPENDIX A: WY 1998 LAKE MICHIGAN DIVERSION ACCOUNTING REPORT

APPENDIX B: WY 1999 LAKE MICHIGAN DIVERSION ACCOUNTING REPORT
INTRODUCTION

The diversion of water from the Lake Michigan watershed is important to the Great Lake states and to the Canadian province of Ontario. The states and province that border the Great Lakes have concerns with diversions during periods of low lake levels and the long-term effects of diversion. To insure these concerns are considered, the U.S. Army Corps of Engineers is responsible for the accounting of flow diverted from the Lake Michigan watershed.

The Water Year (WY) 1999 Annual Report on Lake Michigan Diversion Accounting presents activities by the Corps of Engineers in accounting for the diversion from Lake Michigan by the State of Illinois. The accounting of the diversion is performed according to the guidelines established in the 1980 modified U.S. Supreme Court Decree concerning the diversion.

Presented in this report is the history of the diversion and its accounting, the certification of diversion flows for WY 1998 and WY 1999, a description of the sources of the diversion, a description of the accounting procedures, and a summary of all significant activities that occurred during WY 1999 through to the present.

AUTHORITY FOR REPORT

HISTORY OF THE DIVERSION

Water has been diverted from Lake Michigan at Chicago into the Mississippi River Watershed since the completion of the Illinois and Michigan (I & M) Canal in 1848. At that time, the diversion averaged about 500 cubic feet per second (cfs). The I & M Canal was built primarily to serve transportation needs by providing a connecting watercourse between the Great Lakes and the Mississippi River system.

With the development of the Chicago metropolitan area, sewer and drainage improvements led to severe sanitation problems in the mid to late 1800’s. The newly constructed sewers moved water and wastes into the Chicago River, which until 1900 drained to Lake Michigan. The water quality of Lake Michigan deteriorated and contaminated the city’s primary water supply.

A second problem that occurred during this time period was an increase in the overbank flooding within the city. As more roads were built and buildings constructed, the sewer system was correspondingly expanded. The increase in impervious area from the newly constructed roads and buildings increased the rate and volume of stormwater runoff and resulted in increased flooding.
As a solution to the sanitation and flooding problems, construction of the Chicago Sanitary and Ship Canal (CSSC) was undertaken. Construction of the CSSC allowed the flow direction of the Chicago River to be reversed (Figure 1). Construction of the Chicago Sanitary and Ship Canal was completed in 1900 by the MWRDGC. The CSSC followed the course of the older I & M Canal. The CSSC is much larger than the I & M canal and can handle the Chicago River flow, as well as increased shipping. In 1938, the Chicago River Controlling Works (CRCW) was constructed at the mouth of the Chicago River. The CRCW regulates the amount of Lake Michigan water allowed to pass into the river and restricts river flooding from entering Lake Michigan. The Lockport Lock and Dam controls the water level in the CSSC.

Between 1907 and 1910, the MWRDGC constructed a second canal called the North Shore Channel. It extended from Lake Michigan at Wilmette in a southerly direction 6.14 miles to the north branch of the Chicago River. The Wilmette Pumping Station, also known as the Wilmette Controlling Works, regulates the amount of Lake Michigan flow allowed down the channel through the use of one vertical lift gate. The four abandoned 250 cfs pumps have not been used for diversion since 70’s.

Construction of a third canal, the Calumet Sag Channel, was completed in 1922. The canal connects Lake Michigan through the Grand Calumet River, to the CSSC. The Calumet Sag Channel was constructed to carry sewage from South Chicago, Illinois and East Chicago, Indiana. The Blue Island Lock and Dam controlled flow through the canal. The O’Brien Lock and Dam, which replaced the Blue Island Lock and Dam, was completed in 1967 and is located on the Calumet River. The O’Brien Lock and Dam regulates the flow of Lake Michigan waters down the Calumet Sag Channel. Figure 2 shows the affected watershed.
FIGURE 1 DEVELOPMENT OF THE CHICAGO SANITARY AND SHIP CANAL SYSTEM
FIGURE 2 LOCATION PLAN - LAKE MICHIGAN DIVERSION AT CHICAGO
SIGNIFICANT HYDROLOGIC EVENTS

During WY 1999, an average total of 36.33 inches of precipitation fell at the 25 Illinois State Water Survey (ISWS) raingages that make up the Lake Michigan Diversion Accounting raingage network. The average total precipitation for WY 1999 is 3% less than the nine year (1990-1998) average of 37.61 inches for the 25 raingage network and was within 5% of the 1961-1990 Chicago O'Hare Airport annual precipitation average of 35.82 inches. Table 1 tabulates the recorded monthly rainfall data during WY 1999, and the deviation from the ISWS nine year annual and monthly average precipitation.

<table>
<thead>
<tr>
<th>Month</th>
<th>WY 1999 Precipitation (inches)</th>
<th>1990-1998 Average Precipitation (inches)</th>
<th>Deviation</th>
<th>Percent of Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-98</td>
<td>3.79</td>
<td>3.38</td>
<td>0.41</td>
<td>112%</td>
</tr>
<tr>
<td>Nov-98</td>
<td>1.76</td>
<td>3.51</td>
<td>-1.75</td>
<td>50%</td>
</tr>
<tr>
<td>Dec-98</td>
<td>1.22</td>
<td>1.66</td>
<td>-0.44</td>
<td>73%</td>
</tr>
<tr>
<td>Jan-99</td>
<td>3.98</td>
<td>2.27</td>
<td>1.71</td>
<td>175%</td>
</tr>
<tr>
<td>Feb-99</td>
<td>1.12</td>
<td>2.06</td>
<td>-0.94</td>
<td>54%</td>
</tr>
<tr>
<td>Mar-99</td>
<td>1.47</td>
<td>2.66</td>
<td>-1.19</td>
<td>55%</td>
</tr>
<tr>
<td>Apr-99</td>
<td>6.36</td>
<td>3.31</td>
<td>3.05</td>
<td>192%</td>
</tr>
<tr>
<td>May-99</td>
<td>4.07</td>
<td>3.70</td>
<td>0.37</td>
<td>110%</td>
</tr>
<tr>
<td>Jun-99</td>
<td>4.95</td>
<td>4.22</td>
<td>0.73</td>
<td>117%</td>
</tr>
<tr>
<td>Jul-99</td>
<td>2.39</td>
<td>3.58</td>
<td>-1.19</td>
<td>67%</td>
</tr>
<tr>
<td>Aug-99</td>
<td>2.81</td>
<td>4.35</td>
<td>-1.54</td>
<td>65%</td>
</tr>
<tr>
<td>Sep-99</td>
<td>2.41</td>
<td>2.91</td>
<td>-0.50</td>
<td>83%</td>
</tr>
</tbody>
</table>

Annual:
36.33 inches (WY 1999) vs. 37.61 inches (1990-1998 Average) deviation: -1.28 inches (97%)

No significant storm events occurred during WY 1999, that had at least one gage with a recorded rainfall depth and duration that corresponded to a storm which equaled or exceeded the 5-year recurrence frequency for northeastern Illinois. However, the storm event occurred on October 16 through 18, 1998 had 4 gages with a recorded rainfall depth and duration that corresponded to a storm which equaled or exceeded the 2-year recurrence frequency for northeastern Illinois.

STATUS OF ACCOUNTING REPORTS

Lake Michigan diversion flow data is summarized in accounting reports prepared on an annual basis as flows are certified. Since implementation of the modified Supreme Court Decree of 1 December 1980 and before this report, the Corps of Engineers has certified diversion flows for WY 1981 through WY 1997. The WY 1998 Lake Michigan Diversion Accounting Report is certified and included as appendix A of this Water Year 1999 Annual Report, and the WY 1999 Lake Michigan Diversion...
Accounting Report is certified and included as appendix B of this same Annual Report. The State of Illinois diverted 3,060 cfs during WY 1998. This diversion is 140 cfs less than the 3,200 cfs 40 year average diversion specified in the 1980 modified decree. The State of Illinois diverted 2,909 cfs during WY 1999. This diversion is 291 cfs less than the 3,200 cfs 40 year average diversion specified in the 1980 modified decree. Table 3 shows the accounting year, the certified flows, the running average flows, and the cumulative deviation from the allowable diversion of 3,200 cfs.

The running average diversion for the period WY 1981 through WY 1998 is 3,382 cfs, 182 cfs greater than the 3,200 cfs 40 year average diversion specified by the modified decree, and the running average diversion for the period WY 1981 through WY 1999 is 3,357 cfs, 157 cfs greater than the 3,200 cfs limit. Also, the annual average diversion has exceeded the 3,680 cfs annual limit three times, once more than the maximum number of times allowed in the decree. Additionally, the absolute annual maximum of 3,840 cfs has been exceeded during the WY93 accounting period. The cumulative deviation, the sum of the differences between the annual average flows and 3,200 cfs, is -3,267 cfs-years at the end of WY 1998; the cumulative deviation is -2,976 cfs-years at the end of WY 1999. The negative cumulative deviation indicates a cumulative flow deficit. The decree specifies a maximum allowable deficit of -2,000 cfs-years over the first 39 years of the 40-year averaging period.

Data collection and compilation, diversion accounting and report writing for the WY 1998 and 1999 accounting reports were done by the Corps. Hydrologic and hydraulic modeling for these two Water Years was performed by Mead & Hunt under contract with USACE, Chicago District. Data collection and compilation for this report began in Fiscal Year (FY) 2001.
<table>
<thead>
<tr>
<th>Accounting Year</th>
<th>Certified Flow (cfs)</th>
<th>Running Average (cfs)</th>
<th>Cumulative Deviation (cfs-yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>3,106</td>
<td>3,106</td>
<td>94</td>
</tr>
<tr>
<td>1982</td>
<td>3,087</td>
<td>3,097</td>
<td>207</td>
</tr>
<tr>
<td>1983</td>
<td>3,613</td>
<td>3,269</td>
<td>-206</td>
</tr>
<tr>
<td>1984</td>
<td>3,432</td>
<td>3,310</td>
<td>-438</td>
</tr>
<tr>
<td>1985</td>
<td>3,472</td>
<td>3,342</td>
<td>-710</td>
</tr>
<tr>
<td>1986</td>
<td>3,751</td>
<td>3,410</td>
<td>-1,261</td>
</tr>
<tr>
<td>1987</td>
<td>3,774</td>
<td>3,462</td>
<td>-1,835</td>
</tr>
<tr>
<td>1988</td>
<td>3,376</td>
<td>3,451</td>
<td>-2,011</td>
</tr>
<tr>
<td>1989</td>
<td>3,378</td>
<td>3,443</td>
<td>-2,189</td>
</tr>
<tr>
<td>1990</td>
<td>3,531</td>
<td>3,452</td>
<td>-2,520</td>
</tr>
<tr>
<td>1991</td>
<td>3,555</td>
<td>3,461</td>
<td>-2,875</td>
</tr>
<tr>
<td>1992</td>
<td>3,409</td>
<td>3,457</td>
<td>-3,084</td>
</tr>
<tr>
<td>1993</td>
<td>3,841</td>
<td>3,487</td>
<td>-3,725</td>
</tr>
<tr>
<td>1994</td>
<td>3,064</td>
<td>3,456</td>
<td>-3,589</td>
</tr>
<tr>
<td>1995</td>
<td>3,197</td>
<td>3,439</td>
<td>-3,586</td>
</tr>
<tr>
<td>1997</td>
<td>3,114</td>
<td>3,400</td>
<td>-3,407</td>
</tr>
<tr>
<td>1998</td>
<td>3,060</td>
<td>3,382</td>
<td>-3,267</td>
</tr>
<tr>
<td>1999</td>
<td>2,909</td>
<td>3,357</td>
<td>-2,976</td>
</tr>
</tbody>
</table>
SOURCES OF DIVERSION

The Lake Michigan diversion consists of three primary components. These components are domestic pumpage from Lake Michigan used for water supply and not returned to Lake Michigan, stormwater runoff from the diverted Lake Michigan watershed, and direct diversions through the three lakefront control structures.

Domestic pumpage from Lake Michigan is used for water supply and its effluent is discharged to the canals by various Water Reclamation Plants (WRP’s). Currently, the WRP’s that divert domestic pumpage from the lake either discharge to the canal system or to the Des Plaines River and its tributaries. In the future as more communities convert to Lake Michigan water supply, water supply effluent may also be discharged to the Fox River. The Fox River is approximately 35 miles west of downtown Chicago.

Stormwater runoff that previously drained to Lake Michigan through the Chicago River and the Calumet River now drains to the Chicago Sanitary and Ship Canal (CSSC) and the Calumet Sag Channel, respectively. The Calumet Sag Channel drains to the CSSC, and the CSSC ultimately drains into the Illinois River and the Mississippi River. The drainage area of the diverted Lake Michigan watershed is approximately 673 square miles.

Direct diversions occur at three lakefront locations; the Chicago River Controlling Works (CRCW), the O’Brien Lock and Dam, and the Wilmette Controlling Works. These controlling structures are located downtown, at the south end, and at the north end of the Chicago area, respectively. The direct diversion at each of these locations consists of four components; lockage, leakage, discretionary flow and navigation makeup flow. The lockage component is the flow used in locking vessels to and from the lake. The leakage component is water estimated to pass, in an uncontrolled way, through or around the three lakefront structures. The purpose of the discretionary diversion is to dilute effluent from sewage discharges and improve water quality in the canal system. Navigation makeup water is made up of two parts. When large storms are forecast, the canal is drawn down before the storm to prevent flooding, and navigation makeup water is used during this draw down period to maintain navigation depths. If the runoff is not enough to refill the canal, additional navigation makeup water is passed.

ACCOUNTING PROCEDURES

Diversion accounting uses both measured and estimated flows. A series of hydrologic and hydraulic computer models use various meteorological data to simulate flows not measured. These simulated flows as well as measured flows are used to compute the diversion. Along with the diversion calculation, a number of water budgets verify simulated flows and estimate the reliability of the computed diversion.
DIVERSION COMPUTATION

An acoustic velocity meter (AVM) was installed and has been operating at Romeoville (five miles upstream of the Lockport Powerhouse and three miles upstream of the Lockport Controlling Works) since 12 June 1984. The AVM directly measures total flow through the canal above both the Powerhouse and the Controlling Works. The overwhelming majority of the Lake Michigan diversion and some non-Lake Michigan flows pass through the AVM. The diversion accounting procedure uses the flow measured at Romeoville and deducts flows not accountable in the diversion. Diversion flows which bypass Lockport are added to yield the net computed diversion of water from Lake Michigan. This procedure represents the accounting technique as required by the modified Supreme Court Decree.

The flow measured at Romeoville was approximately 102% of the annual diversion during WY 1998 and 101% during WY 1999. Approximately 92% and 91% of the diverted water was measured by the AVM during WY 1998 and WY 1999, respectively.

Deductions from the Romeoville AVM flow include runoff from 217 square miles of the Des Plaines River watershed discharged to the canal, groundwater supply effluent and groundwater seepage into the Tunnel and Reservoir Plan (TARP) tunnels discharged to the canal, and Indiana water supply discharged to the canal through the Calumet River system and the Calumet Sag Channel (see figure 2 for locations). The computer models of the Des Plaines watershed area estimate the runoff deduction. The groundwater pumpage deductions are obtained directly from pumping records. The Indiana water supply is computed from pumping records and a calculation to determine the portion of the water supply draining west to the Calumet Sag Channel.

The additions for diversion flow that do not flow through Romeoville are primarily Lake Michigan water supply pumpage effluent treated and released to the Des Plaines River or its tributaries. This flow is obtained directly through pumping records of the communities involved and accounts for approximately 8.3% of the diversion in WY 1998 and 9.0% in WY 1999. As more communities convert to Lake Michigan water supply, the percentage will increase.

DIVERSION BUDGET CHECKS

Water budgets verify those flows that are not measured. Most of the budgets compare simulated flows to recorded flows and these comparisons indicate the accuracy of the diversion accounting. The four primary budgets are the budgets for the three major Water Reclamation Plants (WRP’s) that serve the area involved in diversion accounting and the canal balance budget for the CSSC. The Upper Des Plaines pump station budget will also become a significant budget after measurement problems are resolved. The remaining budgets estimate runoff from stream gaged areas in the Lake Michigan watershed or are budgets of non-simulated flows such as water supply pumpage. The budgets are discussed in detail in the WY 1998 and WY 1999 accounting reports.

ACTIVITIES FOR FY 1999
The activities in FY 1999 focused on completing the WY 1996 accounting report, beginning activities related to WY 1997 diversion accounting, and coordination of activities related to the Fourth Technical Committee. The lakefront activities, including,

- The USGS work with the lakefront gages at the Chicago River Controlling Works and O’Brien Lock and Dam.
- Ongoing mediation activities related to the Great Lakes Mediation Committee that was initiated in December 1995 including technical support.
- The U.S. Water Conservatory Laboratory detailed QA/QC analysis of three pumping stations.

continued in FY 1999 and also included the USGS installation of an AVM gage at Wilmette. A contract was initiated for work on a detailed QA/QC of ten primary water supply diverters in Chicago and five in the northern Chicago suburbs. The Corps also completed a hydraulic analysis of various alternatives for Navigation Makeup Reduction.

ACTIVITIES FOR FY 2000 – FY 2003

The efforts in FY 2000 included completion of the WY 1997 annual report (WY 1996 accounting report) and activities related to the WY 1997 accounting report. Data collection for WY 1998 and 1999 was begun. Tasks associated with Lakefront accounting for WY 1997 were also continued in FY 2000. Corps activities continued in support of the Great Lakes Mediation Committee. In addition, activities related to the evaluation of lakefront accounting have continued. The contract for work on a detailed QA/QC of ten primary water supply diverters in Chicago and five in the northern Chicago suburbs continued in FY 2000. A contract was initiated for a preliminary field investigation of the remaining water supply metering systems for nine (9) pumping stations within the Chicagoland area. Finally, the Corps and the State of Illinois negotiated an agreement to execute a Navigation Makeup demonstration study. The field demonstration study would assess the impacts of a change to the existing Navigation Makeup operations in an effort to reduce this component of diversion. The one-year demonstration study was slated for FY 2001 and could potentially lead to a change in the Code of Federal Regulations.

The activities in FY 2001 included the completion of the WY 1998 annual report (WY 1997 Romeoville accounting report). Activities related to the WY 1998 and WY 1999 Romeoville accounting reports (data collection and necessary model revisions) continued. Tasks associated with Lakefront accounting for WY 1997, 1998 and 1999 continued in FY 2001. The Fourth Technical Committee provided its final report to the USACE in May 2001, and was included as an appendix to the WY 1998 Annual Report. The final report on the preliminary field investigation of the water supply metering system for nine pumping stations within the Chicagoland area was completed. The studies on long-term runoff and consumptive use, which provided the technical basis of an agreement between the states to potentially move the accounting process to the lakefront, continued in FY 2001. The contract for work on a detailed QA/QC of ten primary water supply diverters in Chicago and five in the northern Chicago suburbs was modified in response to a major comment made by the Fourth Technical Committee. Coordination continued on the effort to implement the one-year Navigation Makeup Reduction demonstration study during FY 2001.
The activities in FY 2002 included the completion of hydrologic and hydraulic modeling for WY 1998 and WY 1999. Data collection for WY 2000 and 2001 was begun. Tasks associated with Lakefront accounting for WY 1997, 1998 and 1999 continued in FY 2002. Selection of the Fifth Technical Committee was begun. The draft reports on the detailed QA/QC of 12 primary water supply diverters in Chicago and six in the northern Chicago suburbs were available. The study on long-term runoff, which provided the technical basis of an agreement between the states to potentially move the accounting process to the lakefront, was augmented to extend the end modeling point from WY 1994 to WY 1999 to cover a continuous period of 49 years (WY 51 through WY 99). Mediation activities related to the Great Lakes Mediation Committee continued. Work on a comprehensive diversion accounting manual also continued. Finally, the Corps and the MWRDGC executed a Navigation Makeup demonstration program during April through May, 2002. Extensive hydraulic and water quality data were obtained for four storm events during the demonstration period. Survey data from the canal operatives were also collected. The field demonstration study would look at the impacts of a change to the existing Navigation Makeup operations in an effort to reduce this component of diversion.

ACCOUNTING REPORTS

SUMMARY AND CONCLUSIONS

SUMMARY

The Lake Michigan Diversion Accounting procedure continues to evolve and improve. Further improvements to the Romeoville Accounting are being implemented and progress continues to be made on the Lakefront Accounting activities.

CONCLUSIONS

The Lake Michigan Diversion Accounting Reports for WY 1998 and WY 1999 have been completed as required by the Supreme Court Decree. The State of Illinois diverted 3,060 cfs during WY 1998 and 2,909 cfs during WY 1999. These flows are 140 cfs and 291 cfs less than the 3,200 cfs limit specified in the decree for WY 1998 and WY 1999, respectively. The running average of the diversion for WY 1981 through WY 1998 is 3,382 cfs, or 182 cfs over the annual allocation, and the running average of the diversion for WY 1981 through WY 1999 is 3,357 cfs, or 157 cfs over the annual allocation. Also, the annual average diversion has exceeded the 3,680 cfs annual limit three times, once more than the maximum number of times allowed in the decree. Additionally, the absolute annual maximum of 3,840 cfs has been exceeded during the WY93 accounting period. The cumulative deviation is −3,267 cfs-years at the end of WY 1998, and the cumulative deviation reduces to −2,976 cfs-years at the end of WY 1999. The negative sign indicates a cumulative flow deficit. The maximum allowable cumulative flow deficit specified in the decree is -2,000 cfs-years.
APPENDIX A

LAKE MICHIGAN DIVERSION ACCOUNTING

WATER YEAR 1998 REPORT
APPENDIX B
LAKE MICHIGAN DIVERSION ACCOUNTING
WATER YEAR 1999 REPORT